
The WISE Approach to Architect Wireless Services

Patricia Lago*, Mari Matinlassi**

*Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
Patricia.Lago@polito.it

**VTT Technical Research Centre of Finland, 90571 Oulu, Finland
Mari.Matinlassi@vtt.fi

Abstract. The Internet is quickly evolving towards the wireless Internet that
will be based upon wirelines and devices from the traditional Internet, and will
reuse some of its techniques and protocols. However, the wireless Internet will
not be a simple add-on to the wireline Internet. From the technical point of
view, new challenging problems arise from the handling of mobility, handsets
with reduced screens and varying bandwidth. As a result, developing and
operating new mobile services will be a challenging software engineering
problem. The WISE (Wireless Internet Service Engineering) Project aims at
producing integrated methods and tools to engineer services on the wireless
Internet. In particular, this paper introduces the WISE approach to service
engineering, describes how it is applied to a real world Pilot service and reports
initial feedback from project partners when applying the approach.

1 Introduction1

The demand for wireless Internet services is growing quickly, partly because 3G
mobile phones are entering the market. The development of wireless services faces
challenges, like handling to support mobility with continuous communication,
handsets with reduced screens and varying bandwidth. This also causes new business
models to emerge.

In this changing evolving scenario, the WISE (Wireless Internet Service
Engineering) project aims at anticipating the problems of wireless Internet service
engineering by producing integrated methods and tools to engineer services on the
wireless Internet, capable of reducing costs and time to market. In detail, the WISE
Project has the following objectives:

• Deliver methodology and technology to develop services on the wireless Internet.
• Experiment with methodology and technology in real life applications.
• Prepare tools and metrics to evaluate the effect of methodology and technology.
• Disseminate results to the broadest possible audience.

1 This work has been partially supported by IST Project 30028 WISE (Wireless Internet Service

Engineering). URL http://www.wwwise.org

In this paper we introduce the WISE approach, a methodology to be applied to
wireless services. The WISE approach is based on the QADA method defined in [1].
The Quality-driven software Architecture and Quality Analysis (QADA) method
includes three viewpoints at two levels of abstraction: structural, behavior and
deployment. The WISE approach extends the modeling requirements with a definition
of the fourth viewpoint, the development viewpoint [2]. According to IEEE Std-1471-
2000 [3], “an architectural view is a representation of a whole system from the
perspective of a related set of concerns”. In the literature, there are several approaches
to the design of software architecture that concentrate on different views of
architecture. The first of these view-oriented design approaches was the 4+1
approach, developed by Krutchen [4]. After this, several others have approached the
jungle of architectural viewpoints. For instance, Jaaksi et al. introduced their 3+1
method in 1999 [5] and Hofmeister et al. used four views to describe architecture [6].

Among these approaches there is no agreement on a common set of views or on
ways to describe the architectural documentation. This disagreement arises from the
fact that the need for different architectural views and architectural documents is
dependent on two issues: system size and software domain e.g. the application
domain, middleware service domain and infrastructure service domain. Again, both
the system size and domain have an impact on the amount of different stakeholders.
Therefore, it is obvious that none of these methods alone is comprehensive enough to
cover the design of software architectures for systems of a different size on various
domains, or provide an explicit means to create architectural descriptions for all the
systems. We are neither trying to cover all the domains, nor to define a catchall set of
architectural viewpoints. Instead, we concentrate on the wireless service architectures
and the viewpoints needed in wireless service architecture modeling.

WISE Pilots are demonstration environments to experiment with the methodology
and technology. Moreover, to simulate the evolution of a Pilot through successive
developments, each Pilot undertakes three iterations in which experience gained
during previous iteration is taken into the current one. In particular, the Project is now
in its first iteration, in the “architecture definition phase”. The next step will be to
define the reference architecture and reiterate; the final Project goal is the
consolidation of a reference architecture for wireless services, refined at each
iteration.

The paper is structured as follows. After an introduction to the WISE approach and
its architectural viewpoints, we present one of the WISE Pilot services and explain the
WISE viewpoints and modeling notation through examples taken from the Pilot.
Finally, we draw some initial considerations, and report feedback from industrial
partners, when applying the WISE approach to service engineering.

2 The Approach

WISE approach (Fig. 1) starts with “pre-studies & analysis” that define the driving
requirements for the system and identifies possible constraints for service
engineering. Driving requirements are the main requirements for the whole system,
i.e. the main quality and/or functional goals the system has to provide. Constraints

may e.g. be related to rules set by laws, enabling technologies or hardware device
manufacturers [1].

The next step is made up of three tasks that can be carried out in parallel, prior to
successive steps. In particular, the aim of the task “survey architectural styles &
patterns” [7] is to identify the applicable styles and patterns for the system under
development. In addition to requirements engineering, the task “define service
taxonomy” assists in the design of the conceptual architecture by identifying the
functional domains to which services belong. For instance for the wireless domain,
the adopted service taxonomy classifies wireless Internet services into four
preliminary domain categories:

− End-user services that are provided directly for the end-users (customers).
− Technology platform services that provide basic functions on which end-user

services rely (even though usually not directly used by the end-user as such). Third
party service developers can provide these services.

− Application Domain Support Services that are not as generic as technology
platform services but specific for the application domain and, on which end-user
services also rely. For instance, the domain of multi-user arcade games requires at
least a service enabling multi-user communication.

− Management services that are needed to make service available and linked to
business processes, even though they are not specific to end-user services.

However, other categories as the mentioned may be used. These categories are
used as guidelines defining the structure of the conceptual architecture, and they assist
in grouping services into reasonable blocks. Next, the features of the services in these
domains are grouped. The features are related to requirements categories of services.
The features provided by each domain guide for selecting the general requirements
and constraints for service development.

Fig. 1. The main steps of the approach for wireless service engineering

Before development of Pilot architecture, the task “architectural guidelines”
defines a set of viewpoints modeling the conceptual and concrete architecture: each
viewpoint represents a specific architectural aspect as described below. Guidelines
also define each viewpoint’s notation [8].

Conceptual and concrete architectures are both organized into four views, which
are: the structural view, the behavioral view, the deployment view, and the
development view [3, 4, 5, 6]. The conceptual structural view maps functional and
quality responsibilities on a conceptual structure, whereas the concrete structural view
illustrates the component decomposition at the lower aggregation level and extends
component and relationship descriptions into inner details. That is, both the
aggregation and abstraction levels are affected while moving from conceptual
architecture to the concrete one.

The conceptual behavioral view defines dynamic actions of and within a system.
The concrete behavioral view aims to illustrate the behavior of individual components
and interactions between component instances. The modeling notation for these views
is based on Object Management Group (OMG) Unified Modeling Language (UML)
[9]. Diagramming constructs for the first two views are described in Table 1.

Table 1. Modeling notations for the structure and behavior viewpoints

Structural view Behavioral view
Conceptual architectural
methodology
- It yields an architectural,
specification-oriented
perspective of the system

Entities and logical associations
- Guidelines

Interactions among
entities
- Collaboration diagram

Concrete architectural
methodology
- It yields a technical,
design-oriented
perspective of the system

- Class diagram (detailed
component structure)
- Component diagram (shows
exported component interfaces,
interface usage and each
component as a black-box module)
- Component diagram (shows
complex components as white-box
modules with their internal
decomposition)

- Sequence diagram (gross
level, showing
interactions among black-
box components)
- Sequence diagram
(detailed level, showing
how interactions are
implemented internally to
white-box components)

The remaining views of the approach are the deployment view and the development
view. In particular, the conceptual deployment view describes the allocation of units
of deployment to physical computing units. Units of deployment are atomic units (e.g.
a group of components working together) that cannot be deployed across a distributed
environment. The concrete deployment view focuses on the concrete hardware and
software components and their relationships.

The conceptual development view describes the components to be developed and
acquired. In addition, it figures out who is responsible for each service and which
standards and enabling technologies do the services use. The concrete development
view illustrates the realization of software components and their interrelationships.
Table 2 summarizes the modeling notations for the deployment and development
views described above.

Table 2. Modeling notations for the deployment and development views

Deployment view Development view
Conceptual architectural
methodology (methods +
notation)
- It yields an architectural,
specification-oriented
perspective on the system

Deployment diagram
(service development +
communication links)

On top of structural VP
-Assorting components according to
the level of completeness
- Allocating development
responsibilities

Concrete architectural
methodology
-It yields a technical,
design-oriented
perspective on the system

Networked structure
Mapping of black-box
components on top of
the networked structure
Business model and
service provisioning

Technology details
Hardware, software, external
resources
Templates
Guidelines
Implementation, configuration,
usage procedure

The four views at two levels of abstraction cover the main aspects of a distributed
service architecture, from static structure to dynamic behavior, and represent a
complete set of views on a system under development. Of course, for simple systems,
some views might be omitted because they are trivial or missing: it is up to the
architects to identify which views are necessary, and omit the others. In other words,
these views can be considered as a view toolbar, or a set of views at disposal for
describing all and only those views relevant for the system under development.

3 An Initial Experiment

The WISE approach is applied to develop pilot wireless services (or Pilots). For each
Pilot, both conceptual and concrete architectural views are described. For the sake of
simplicity, the following shows just some views of the Pilot 2: the wireless interactive
gaming service. The complete architecture can be requested on [10] and for the
complete Pilot description refer to [11].

3.1 The Problem

The focus of the experiment is on architecting a wireless interactive gaming service,
i.e. an arcade game supporting multiple players executing a mission in a dungeon
labyrinth. This wireless entertainment service is composed of several smaller services,
which together provide the functionality and qualities described below.

Players participate in the game using mobile devices (Fig. 2), with limited
processing power and memory and therefore, it is obvious to delegate the common,
shared playing environment to the server. This, in addition to a capability to manage
several wireless network connections at the same time, results in the server to be a
robust, thick server, whereas terminals are thin clients only hosting the user
applications. This allocation of software conforms to the traditional client-server
architectural style [12] with services centralized on a server and clients located across
the network.

Fig. 2. The problem overview.

Non-functional requirements for our problem are described in Table 3. Each non-
functional requirement is associated with a quality attribute refined with requirement
definition and scope. That means refining what are the semantics of each quality
attribute in this specific system, and where is the requirement context [13]. Non-
functional quality requirements drive the definition of service architecture, which
again drives the scoping of quality requirements.

Table 3. Non-functional requirements

Quality
attribute

Requirement definition Scope/How

Scalability The number of concurrent
players in the game is 2 – n.

Client-Server architecture style
Component Game Server at server side

Portability The game can be played
with devices supporting
either GPRS or UMTS
connection.
End-user devices support:
PalmOS, EPOC, WinCE.

Client application. This requirement is
realized by component Communication
Manager

Layered architecture style
Client application includes a virtual machine
layer

Extendibility Features can be enriched,
hence ensuring service
evolution (in the WISE
project, evolution is
simulated by carrying out
three development
iterations).

Extension points in the architecture and code.
- On the Server side e.g. quest sending, fights
& attacks, manage high score list
- On the Client side e.g. quest receiving and
handling, fights/attacks/defending, buy/sell
items

Modifiability Services should be easily
modified under the
evolution of mobile
terminals’ hardware
capabilities.

Client application. By separating
communication manipulation and game
management, and by splitting logically related
functionality, modification is easier. Of course
any modification is isolated if interfaces are
not influenced.

Concerning development constraints, of particular relevance are the capabilities
offered by mobile terminals, which usually put strict limitations on the provided
service features. In particular, for wireless terminals we analyzed (for each service)
the impact of both the terminal generation (2.0, 2.5 3.0, etc.) and the terminal
equipment class (e.g. 10 Lines’ screen, video resolution, memory, etc.). As an
example, the Pilot service used in our experiment is not limited by terminal
generation but it requires support for J2ME technology.

3.2 Applying the WISE Approach

After this short introduction to requirements, we now turn to the illustration and
discussion of how the approach was applied in architecting a wireless service.

Conceptual Architecture. For the Pilot we present two main conceptual views, the
structural view and the deployment view. The first view (Fig. 3) identifies the main
elements and their relationships at the conceptual level. These elements are specified
out of required macro-functions, defined during requirement engineering and carried
out through interviews of industrial partners, and provide the initial functional-to-
structural mapping of the service under development.

In particular, we can observe how this view presents the first draft of required
domains (e.g. End-User Services, Technology Platform Services), distribution of
elements on domains, and, particularly relevant for wireless services, roles in
communication across domains (e.g. usage, data exchange, control).

<<Application>> Game

<<Service>>
Game List

<<Domain>> Application Domain Support Services

<<Data>>

<<Application>>
Game Management

<<Service>>
Multiplayer Game
Communication

<<Domain>> Management
Services

<<Uses>>

<<Domain>> End User Services

<<Control>>

<<Uses>>

<<Domain>> Technology Platform Services

<<Service>> Java
UI API

End User

<<Uses>>

<<Uses>>

<<Service>> Java

<<Uses>>

<<Uses>>

<<Service>>
HTTP Protocol

<<Service>>
Multiuser

Communication

<<Uses>>

<<Application>>
Game Client

<<Application>>
Game Server<<Uses>>

<<Service>>
Deployment

<<Service>>
Configuration

<<Service>> Storage

<<Service>> Billing

<<Service>>
Authentication<<Uses>>

<<Service>> User
profiles

Fig. 3. Pilot conceptual structural view

The next step is to classify structural elements and their communication links. This
is provided by the conceptual deployment view (Fig. 4).

On the conceptual level, the conceptual elements are treated as services. In this
Pilot service, examples of services are Game Management, Game Server and
Multiplayer Game Communication.

Service Management
Game Server

<<Service>>
Authentication

<<Service>>
Configuration

<<Service>>
Storage

<<Service>>
Billing

<<Service>>
Deployment

<<Service>>
Game List

Mobile Terminal

<<Application>>
Game Client

HTTP

<<Application>>
Game Server

<<Service>>
Game Management

<<Service>>
Game Management

<<Service>>
User profiles

<<Service>> Multiplayer
Game Communication

<<Service>>
Multiplayer Game
Communication

<<Service>> Multiuser Communication

Fig. 4. Pilot conceptual deployment view

Concrete Architecture. For the Pilot, we present the concrete structural, behavioral
and deployment views, as follows.

Structural View. The structural view shows the modules (classes and components)
making up the service. In distributed architectures, these views provide the structure
of distributed components and their interconnections.

On the concrete level, the conceptual services will be mapped on concrete
components. Concrete components implement one or multiple conceptual services.
Accordingly, we see that, (Fig. 3 and Fig. 5) the concrete GameManager component
(on the client side) implements the conceptual service Game Management, the Game
Manager concrete component (on the server side) implements both Game Server and
Communication Manager conceptual services, and so on. As a general rule, names
assigned to concrete components will match those of conceptual services (if the
mapping is one-to-one); otherwise, i.e. if a component implements multiple
conceptual services, the concrete component name is decided independently.

In particular, in Pilot 2 architecture, Fig. 5 depicts in white all components to be
implemented, and in darker colors “external” components or technologies (reused or
bought). External components are the authentication center and the database. The first
component accesses the second, which stores User profile information. Both are
located in the domain of a third party Service Provider in charge of managing
orthogonal services in outsourcing. As another example, Kjava support is part of the
technology already available on the terminal platform, and used by the Pilot client-
side.

In the domain of the Service Provider, two components implement service-specific
functionality: the Game Server component implements the game and the coordination
of each game session. The Service Download Center component is a service-common
component, providing support for the end-user to choose and download (on the client
side) the application implementing the GUI of the game. In particular, the end-user
can in principle first choose a game from an Application Provider (e.g. a game
center), and only afterwards decide to play on-line game sessions supported by a
Service Provider.

Finally, on the client side there are two components providing service-specific
functionality: the Game Manager component implements the GUI and the processing
of data related to an on-going game session. It interacts locally with the
Communication Manager component that supports distributed communication with
the remote Service Provider. Together, these two components implement the game,
and are downloaded from a Service Download Center.

Fig. 5. Concrete structural view: System-level component diagram

Further, detailed component diagrams can be specified to provide the detailed
structural view (in terms of internal elements and local interfaces) of those
components yielding a complex structure. For example, Fig. 6 shows the detailed
structure of the Communication Manager component on the Pilot client side, i.e. how
the Communication Manager is decomposed and how it implements its external
interfaces.

Communication Manager

Communication
Mapper

Data
Synchronizer

Game Manager

IC_DataStore_ITF

Game
Server

DataReq_ITFDataResp_ITF

Synchronization_ITF

Login_ITF

Command_Exec_ITF

ClientComm_ITF

Fig. 6. Concrete structural view: Detailed component diagram for the Communication Manager
component

Behavioral View. At the concrete level, Sequence Diagrams [14] model the concrete
behavior scenarios: each diagram shows how components implementing the gaming
service interact to provide the associated scenario. In particular, interactions among
geographically distributed components identify which communication protocol is
required on wireless connections, and supported by component implementation.

As wireless communication always involves user devices, the following will focus
on the Pilot client side. An example of the Behavioral View is a fragment of the
“Game start up” as depicted in Fig. 7. In Game start up, the user configures the game
session and is ready to play.

 : User : GameServer : CommunicationManager : GameManager

ok/ko

StartApp

Logged in/Error

Create / Edit User Account

Login(User Account)
Login(User Account)

Login

In case of successful
login, the server sends the
data of the last used
character profile.

Fig. 7. Concrete Behavioral view: Start Application, create/edit user account, and login

Deployment View. The Deployment view focuses on the execution environment
where the service will fit. This view shows two aspects: the first aspect is the business
model [15] instantiated for the service, and the second is the deployment diagram
mapping the system-level component diagram of the structural view, on the
instantiated business model. For example, the instantiated Business Model (Fig. 8)
and the Deployment Diagram (Fig. 9) compose the Pilot’s concrete Deployment
View.

The instantiated Business Model concentrates on those Business Roles and
Business Relationships relevant to the Pilot2. Business roles in dark play some task in
the operation of the Pilot service. This task can either involve service provisioning
(see those roles inside the dashed box) if there will be some software components
deployed in a networked structure, or not involve service provisioning (see roles
outside the dashed box) if they have a business relationship prior to service
provisioning (e.g. Technology provider). The latter seems particularly relevant for
customers, who need to represent the complete service business chain.

2 The business model specific to a selected Pilot architecture is instantiated from a generic

business model (called the WISE Business Model [16]) defined for the wireless service
domain. Project iterations aim at refining this along with the generic WISE architecture.

In particular, two issues need special attention:

• The business relationship of Application provider to Service user/provider
(ApplicProv): it models “game download” prior to game provisioning. Game
download supports the acquisition from the end-user of the application needed to
play the game (i.e. client components). Download can be carried out from both a
fixed node (e.g. using any Internet browser) and a mobile node. This aspect is
under refinement, representing wired-wireless inter-operation.

• The business relationship between Service providers (Peer): the Pilot considers
authentication and user profile storage as management services supported by a
third party service provider. This aspect will be detailed during current Project
iteration.

Network
Operator

(*) Not involved in service provisioning

Used for the
definition of
the
Architecture

U2SP: User to service provider
TechProv: Technology provider to service user

(*)

Service
User

Service
Provider

ApplicProv

Technology
Provider

TechProv

Motorola client

Application
Provider

Sodalia

Game Company
U2SP

Sonera

(*)
Game
Application
Provider

ApplicProv

Service
Provider

Sodalia
Peer

Peer: between Service providers (for composed service provisioning)
ApplicProv: Application provider to Service user/provider

Fig. 8. Concrete deployment view: The WISE business model instantiated for the Pilot

The second part of the concrete Deployment View is the Deployment Diagram
(Fig. 9): once defined, our instantiated business model, the Deployment Diagram
maps the component diagram on top.

In particular, the diagram proves the following important issues:

1. The domain associated with role Service User, can be deployed on a fixed node
(e.g. a PC connected to Internet) for game download3, or on a mobile node (e.g. a 3G
cellular phone or a 4G mobile device).

2. On the Service Provider side, there are two types of nodes mapped on two different
domains playing the same role: The service node provides the game control, and
service core components are deployed on the service node. Management service node
provides the outsourced management services, on which service-common components
are located. In particular, these components implement orthogonal services, like user
profile access and storage, and authentication.

3 Game execution can be also carried out on a fixed node. This scenario along with the analysis

of QoS and development differences will be possibly investigated later in the Project.

Service
provider

Service User

Service Node

Download server HTML
Browser

U2SP

Fixed

Mobile

Application
provider

ApplicProv

Mgmt Service Node

Game
Manager

Communication
Manager

Game
Server

Authenticati
on Center

DataReq _ITF

Login_ITF
CommResp _I

TF

DataResp _ITF

Service Download
Center

CommReq _IT
F

Auth_ITF

User
Profile DB

UP_DB_ITF
Service

provider

peer

download

Game
Company

Fig. 9. Concrete deployment view: Deployment diagram

4 Discussion

As introduced in the first part of the paper, the WISE Project is still in its first
iteration that concludes in the end of year 2002. At the moment of writing this paper,
industrial partners are working on the Pilot implementation phase. Therefore, we do
not yet have the final results for the complete development of wireless service Pilot
architectures. Nonetheless, we can already draw some initial conclusions, and report
feedback from these industrial partners, in particular when applying the WISE
approach to service engineering.

4.1 Learning curve

At the beginning of the first iteration, the WISE approach has been designed and
explained in a document stating definitions of terms, guidelines for applying it, and
the semantics and notation of viewpoints. The whole approach has been explained to
industrial partners in special meeting sessions especially conceived for training. This,
in consideration of the well-known fact that one of the most critical steps in
introducing new working procedures is people resistance to changes.

In addition, flexibility in learning new concepts decreases with time. Nonetheless,
in this scenario, the use of examples of toy wireless services has been of great help, as

has the fact that the approach viewpoints are based on OMG UML, which is familiar
to all industrial partners, hence providing a common initial background.

After the “training phase”, service engineering started with interview sessions in
which specialists in the proposed approach elicited requirement and design
information from people in charge of service implementation. This kind of “tutored
architecting phase” has been fundamental as a starting point for overcoming people
resistance and learning how to proceed. Afterwards, developers continued the work
on their own, with some sporadic off-line consultancy. Finally, we could observe that
technical people already used to innovation are more receptive than business-oriented
people accustomed to settled working methods.

4.2 Tool support

We said that previous knowledge of UML among people has been of great help in
overcoming resistance to a new working approach. In this respect, the use of a
software tool for requirements engineering and design, has been particularly helpful
in the learning process. After an analysis of available tools and their potentialities, as
well as familiarity of tools, we decided to adopt a commercial UML tool that is
familiar to most of them and widely available, and to adapt the tool to support
viewpoint diagrams in addition to pure UML diagrams. In spite of the difficulties in
drawing, developers applied the approach to their work (not without any difficulties).
We can say that current state of Pilots’ wireless service architecture is maturing fast.
Even industrial partners not used to service engineering at all, are now using the
approach effectively.

4.3 Market- and business-related issues

Among industrial partners, business people found that business views focusing on
market analysis are missing. Used to industrial service engineering in which market-
driven motivation is necessary, they experienced a gap between the four viewpoints
defined by the WISE approach, and “real world” aspects like market analysis and
revenues. It must be underlined that the approach is meant for technical purposes only
(i.e. to engineer the software architecture of services), and business issues are
supposed to be worked out and solved in advance. Nevertheless, diagrams like the
business model provide a natural interface from service architecture to market
analysis and business-related issues.

4.4 Network viewpoint

During requirements analysis, industrial partners made use of informal drawings to
depict the networked structure of devices, machines and terminals involved in service
provisioning. This informal network diagram seems to be very effective in
understanding the execution environment of the service under development, and in
spite of its informality, it provides a valuable common communication mean. This
aspect should be included in the development view (it is under investigation if at the

conceptual or at the concrete level). Its role will be mainly to identify hardware
technologies, network configuration, communication protocols and external software
components.

4.5 Development viewpoints

Another ongoing work in the WISE Project is the definition of the contents and the
border between concrete and conceptual development viewpoints. We can agree that
this viewpoint provides (at the concrete level) service documentation when service
development concludes or at least is ongoing (examples of development
documentation are installation and release notes, usage instructions, hardware and
software pre-requisites, etc.). Nonetheless, also at the conceptual level technology
adoption or hardware/software limitations must be considered in the development
process as early as possible. An important issue then, is to decide what belongs to
which level, and to avoid overlapping.

5 Conclusions

The aim of this paper was to introduce an approach to architect wireless services. In
addition, it was to illustrate the adoption of this approach with an example. The
example was wireless interactive gaming service under development in the WISE
Project. This paper also presented the initial experiences gained during the first
development iteration.

The WISE approach identifies development steps, and a set of architectural
viewpoints and associated visual notation. The main steps are to survey architectural
styles and patterns, to define service taxonomy, and to define service requirements.
These are grouped into functional and quality requirements and constraints. With the
influence of these initial steps, we define the conceptual architecture. Conceptual
architecture is described with up to four architectural views: structural, behavioral,
deployment and development. Conceptual architecture is then refined into the design-
oriented concrete architecture, which describes the similarly named four views at
more technical level with specific details and lower-level decomposition. This paper
represented selected views and diagrams, as examples.

In the WISE Project, these steps will be processed iteratively three times. The first
development iteration is described here, and it comprises only the basic features of the
game; these basic features will be enriched in the two future iterations.

We are currently adopting the WISE approach in the industry and results have been
encouraging. The resistance to change is already overcome with successful help of
training, consulting and example toy services. In addition, the UML-based notation
has been easy to learn and also there is also tool support by adapting familiar
commercial UML tools.

Except for already achieved good results, we have few issues to solve or improve,
especially in relationship to the network viewpoint and the development viewpoint as
explained in the previous section.

Acknowledgements

We would like to thank all partner members of the WISE project, especially Mr.
Kalaoja, Mr. Tikkala, professor Niemelä and Mr. Boggio who are the co-authors of
the architecture guidelines and the game service architecture.

References

1. Matinlassi, M. Niemelä, E. and Dobrica, L: Quality-driven architecture design and quality
analysis method. A revolutionary initiation approach to a product line architecture, VTT
Publications 456, Technical Research Center of Finland, Espoo, FI, 2002.

2. Purhonen, A., Niemelä, E., Matinlassi, M.: Views of DSP Software and Service
Architectures. Submitted to Journal of Systems and Software. 30 p.

3. IEEE Std-1471-2000: IEEE Recommended Practice for Architectural Descriptions of
Software-Intensive Systems. IEEE Computer Society.

4. Krutchen, P. B: The 4+1 View Model of Architecture, IEEE Software Vol. 12(6), 1995.
5. Jaaksi, A., Aalto, J-M, Aalto, A. and Vättö K..: Tried & True Object Development.

Industry-Proven Approaches with UML, Cambridge University Press, New York, 1999.
6. Hofmeister, C., Nord, R. and Soni, D.: Applied Software Architecture, Addison-Wesley,

Reading, MA, 2000.
7. Gamma, E.: Design Patterns: Elements of Reusable Object-oriented Software, Addison-

Wesley, Reading, MA, 1994.
8. Niemelä, E., Kalaoja, J., Lago, P., Tikkala, A.. and Matinlassi, M.: Conceptual

Architecture and Guidelines to Use It, V. 1.0, IST 30028 WISE Project, Deliverable D4,
April 2002.

9. OMG: The Unified Modeling Language (UML) Resource Page. On-line at
http://www.omg.org/uml

10. WISE: The “IST WISE Project home page”. On-line at http://www.wwwise.org
11. Lago, P., Boggio, D., Tikkala, A. and Forchino, F.: Architecture for Pilot 2, V. 1.2, IST

30028 WISE Project, Deliverable D11, June 2002.
12. Bass, L., Clement, P. and Kazman, R.: Software Architecture in Practice, Addison-

Wesley, Reading, MA, 1998.
13. Matinlassi, M. and Niemelä, E.: Designing High Quality Architectures, International

Conference on Software Engineering, Workshop on Software Quality, Orlando, FL, May
2002.

14. Lago, P.: Rendering distributed systems in UML, In: Siau K. and Halping D. (Eds.):
Unified Modeling Language: Systems analysis, design and development issues, Idea
Group Publishing, 2001.

15. TINA-C: “TINA Business Model and reference Points”, TINA-C Baseline, v4.0, May
1997. On-line at TINA Consortium (Telecommunications Information Networking
Architecture) Web site, http://www.tinac.com

16. Kallio, P.: Business Models in Wireless Internet, V. 1.0, IST 30028 WISE Project,
Deliverable D11, May 2002.

